58 research outputs found

    Finite-time bounds for fitted value iteration

    Get PDF
    In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI.The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability.An important feature of our proof technique is that it permits the study of weighted LpL^p-norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is ``aligned'' with the dynamics and rewards of the MDP.The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results.Numerical experiments are used to substantiate the theoretical findings

    Optimistic Planning for Markov Decision Processes

    Get PDF
    International audienceThe reinforcement learning community has recently intensified its interest in online planning methods, due to their relative independence on the state space size. However, tight near-optimality guarantees are not yet available for the general case of stochastic Markov decision processes and closed-loop, state-dependent planning policies. We therefore consider an algorithm related to AO* that optimistically explores a tree representation of the space of closed-loop policies, and we analyze the near-optimality of the action it returns after n tree node expansions. While this optimistic planning requires a finite number of actions and possible next states for each transition, its asymptotic performance does not depend directly on these numbers, but only on the subset of nodes that significantly impact near-optimal policies. We characterize this set by introducing a novel measure of problem complexity, called the near-optimality exponent. Specializing the exponent and performance bound for some interesting classes of MDPs illustrates the algorithm works better when there are fewer near-optimal policies and less uniform transition probabilities

    Bounded Regret for Finite-Armed Structured Bandits

    Full text link
    We study a new type of K-armed bandit problem where the expected return of one arm may depend on the returns of other arms. We present a new algorithm for this general class of problems and show that under certain circumstances it is possible to achieve finite expected cumulative regret. We also give problem-dependent lower bounds on the cumulative regret showing that at least in special cases the new algorithm is nearly optimal.Comment: 16 page

    Toward Optimal Stratification for Stratified Monte-Carlo Integration

    Get PDF
    We consider the problem of adaptive stratified sampling for Monte Carlo integration of a noisy function, given a finite budget n of noisy evaluations to the function. We tackle in this paper the problem of adapting to the function at the same time the number of samples into each stratum and the partition itself. More precisely, it is interesting to refine the partition of the domain in area where the noise to the function, or where the variations of the function, are very heterogeneous. On the other hand, having a (too) refined stratification is not optimal. Indeed, the more refined the stratification, the more difficult it is to adjust the allocation of the samples to the stratification, i.e. sample more points where the noise or variations of the function are larger. We provide in this paper an algorithm that selects online, among a large class of partitions, the partition that provides the optimal trade-off, and allocates the samples almost optimally on this partition

    Generalized Emphatic Temporal Difference Learning: Bias-Variance Analysis

    Full text link
    We consider the off-policy evaluation problem in Markov decision processes with function approximation. We propose a generalization of the recently introduced \emph{emphatic temporal differences} (ETD) algorithm \citep{SuttonMW15}, which encompasses the original ETD(λ\lambda), as well as several other off-policy evaluation algorithms as special cases. We call this framework \ETD, where our introduced parameter β\beta controls the decay rate of an importance-sampling term. We study conditions under which the projected fixed-point equation underlying \ETD\ involves a contraction operator, allowing us to present the first asymptotic error bounds (bias) for \ETD. Our results show that the original ETD algorithm always involves a contraction operator, and its bias is bounded. Moreover, by controlling β\beta, our proposed generalization allows trading-off bias for variance reduction, thereby achieving a lower total error.Comment: arXiv admin note: text overlap with arXiv:1508.0341
    • …
    corecore